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Introduction 

The contemporary world is increasingly facing a wide variety of organised 
crime, a special attention being paid lately to the drug phenomenon, taking into 
account everything that it entails: manufacturing, transportation, distribution and 
consumption. Drug trafficking is a well-known danger for the population, 
especially for some age groups - teenagers and youth in general, which 
represents a huge threat regarding public health, a fact pertaining to national 
security. 

Romania has quite easily shifted from a status of transition country to a 
country of drug consumers. At present, there is a variety of ways by means of 
which illicit drugs can enter the country (by naval, air or terrestrial transportation). 
Aside from money laundering, which trafficking drugs entails, the health system 
is also under pressure as most of the consumers develop various medical 
conditions. 

The increasing danger of drug consumption is mentioned more and more 
in global reports that are trying to alert, caution and mobilise the fight against this 
terrible calamity. The 2023 European Drug Report made by the European 
Monitoring Centre for Drugs and Drug Addiction (EMCDDA) points out the fact 
that record quantities of illegal drugs are being seized. It emphasises an 
immediate need for data collecting pertaining to toxicology, which would 
concretely reveal the effects of the new synthetic substances [1].    

The increase of drug trafficking is due not only to the use of modern 

technology in their manufacturing, but also by the innovative ways of smuggling. 

Thus, the fight against drug trafficking means using modern detection methods.  

Therefore, it is imperative to detect not only the well-known drugs of abuse, 

but also any new substance that has a similar molecular structure. This is very 

useful: once a new substance is included on the list of illicit substances pertaining 

to the adjacent law, the clandestine laboratories immediately release new 

compounds on the black market in order to avoid legal consequences. These new 

substances are not among the banned ones. However, having a molecular 

structure similar to a drug of abuse, they may have a similar biological 

(pharmacological and/or toxicological) activity at given concentrations. 

Summary and structure of the scientific work 

This PhD thesis, entitled “Multivariate mathematical methods applied for 
illicit drug detection”, comprises five chapters alongside an introduction to the 
studied topic. 

 The paper starts with an introduction, which presents the outlines on drug 
trafficking and emphasises the necessity of using modern detection methods 
within the context of an ongoing expansion of the black market. 
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Chapter I comprises an outline of the analysed substances of abuse 
belonging to 2C-x, DOx and NBOMe classes of drugs of abuse. This chapter 
highlights the results published in different studies and reports on the targeted 
substances, their IUPAC and other names, alongside their corresponding 
molecular structures and formulas. 

Chapter II describes the use of the ATR-FTIR spectral method for the 
identification and the characterisation of the targeted substances. Within this 
chapter, the basics of the ATR-FTIR method, the content of their ATR-FTIR 
spectra and their vibrational analysis are presented. 

Chapter III, entitled “Mathematical methods and approaches applied for the 
analysis and the identification of class membership of the targeted drugs of 
abuse”, presents the fundamental mathematical concepts that lie at the basis of 
the molecular descriptors, the statistical measures, the exploratory analysis 
methods (PCA, ICA, Autoencoders), the machine learning methods (SVM, RF, 
GB, XGBoost, KNN), as well as the performance indicators used within this work. 

Chapter IV presents the author’s personal scientific contributions regarding 
the analysis and the recognition of the class identity of representative chemical 
compounds belonging to the 2C-x, DOx și NBOMe classes of drugs of abuse, 
based on specific analytical techniques and the application of a variety of 
multivariate mathematical methods. Within this chapter, we are presenting not 
only the results obtained based on the ATR-FTIR spectra of these compounds, 
but also those obtained based on the molecular descriptors and the toxicity 
parameters calculated for these drugs of abuse. 

Chapter V comprises the general conclusions that sum up the research 
presented within this work, by emphasising the original results obtained, 
accompanied by future potential directions for research and development. 

The thesis ends with the list of published scientific articles, the list of 
scientific papers presented at national and international conferences, the 
participation within projects and also the won awards. 

Motivation of choosing the research theme 

Nowadays, the challenge of drug consumption is undeniable. This poses 
major issues to the current society and, unfortunately, their negative influence is 
reflected to a large extent on increasingly younger age groups. High school 
students and university students have become an easy target, their psycho-social 
development being seriously threatened. the present scientific work in the fast 
detection of drugs of abuse in order to annihilate the devastating effects which 
the consumption of these substances can lead to is justifiable. 

The identification and the characterisation of the new synthetic drugs of 
abuse by means of the classic laboratory equipment takes time and implies large 
analysis costs. On the other hand, in the case of the identification of a new illegal 
substance, it is important that the decision whether to confiscate it (or not) to be 
taken as fast as possible, for example in order to avoid the detention of innocent 
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people. That is why it is necessary to develop computerised applications in order 
to allow a fast, in situ, detection, therefore performed with portable devices. For 
these devices to be used by persons with no advanced training in analytical 
chemistry and toxicology, such as policemen or customs workers, it is imperative 
to develop computerised applications that would automatically process the 
analytical information and indicate which decision must be taken regarding 
confiscation. 

These computerised applications presuppose the implementation of certain 
specific techniques which rely on a complex mathematical foundation. Thus, one 
can deduce the important role of mathematics as a basis for the development of 
automatic drug detection. 

The starting point of this thesis is the possibility of automatically identifying 
the 2C-x, DOx and NBOMe drugs of abuse by means of a variety of multivariate 
mathematical methods. More precisely, the research focused on creating models 
enabling the rapid detection of the targeted drugs of abuse, in this way helping 
the fight against drug trafficking. Also, the characterisation and the evaluation of 
the grouping tendency of the 2C-x, DOx and NBOMe drugs of abuse was 
pursued, in order to develop models predicting their biological activity. 

Pursued research objectives 

Within the present thesis, the main research objectives pursued were: 

•  carrying out of a literature research regarding the current 
state of the art, materialised in categorising the existing data in the literature 
pertaining to the field of study regarding the main drugs of abuse belonging to the  
2C-x, DOx and NBOMe classes; 

•  describing the ATR-FTIR spectral method used for the 
characterisation and the identification of drugs of abuse;  

•  presenting the mathematical methods and approaches that 
were applied for the analysis and the identification of the class membership of the 
targeted compounds; 

• performing the analysis and the recognition of the drug class 
identity based on specific multivariate techniques and the application of various 
mathematical methods through: 

 developing machine learning systems able to 
detect drugs of abuse belonging to the targeted classes, based on their ATR-FTIR 
spectra;  

 performing the vibrational analysis of some drugs 
of abuse belonging to the targeted classes based on their ATR-FTIR spectra; 

 characterising and evaluating the clustering 
tendency of representative drugs of abuse from the 2C-x, DOx și NBOMe classes 
based on their molecular descriptors and toxicity parameters. 
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1.         Chapter I.  Presentation of the analysed 2C-x, DOx and 

NBOMe compounds  

 

1.1. Introduction 

The drug market has seen a significant expansion worldwide in recent 
years. Over the years, more and more substances have been placed in certain 
risk groups, their consumption being prohibited [2]. However, in recent years, the 
number of drugs of abuse present on the black market has increased at a rapid 
pace. As certain drugs are banned, clandestine laboratories produce alternative 
structures for them in order to avoid legal consequences [3].  

Phenylethylamines are organic compounds that stimulate the human 
central nervous system and are consumed globally as recreational drugs. By 
replacing one or more hydrogen atoms in the molecular structure of 
phenylethylamine, new derived compounds are obtained. They form the class of 
substituted phenylethylamines.  

Synthetic compounds belonging to the class of substituted 
phenylethylamines have experienced rapid spread in the drug abuse market. 
Among them, very dangerous for human health are those analogues that have 
hallucinogenic effects (in addition to the stimulant pharmacological activity), such 
as those belonging to the 2C-x, DOx and NBOMe classes of drugs of abuse. 

The 2C-x compounds (substituted Dimethoxyphenylethylamines) are 
phenylethylamines containing methoxy groups at the 2 and 5 positions of the 
benzene ring. Most 2C-x compounds contain various lipophilic substitutes at 
position 4 of the benzene ring. The name of "2C" was introduced by Alexander 
Shulgin and refers to the two carbon atoms present between the amino group 
and the benzene ring [4,5]. The general chemical structure of the 2C-x 
compounds is shown in Figure 1.1. 

Many compounds belonging to 2C-x class were first synthesized by 
Alexander Shulgin in the 1970s–1980s [6]. In 1991, he published with his wife, 
Ann Shulgin, the book PiHKAL (Phenethylamines I Have Known And Loved), 
which presents the results of his research. The book presents both the synthesis 
and the side effects associated with the consumption of various compounds 
belonging to the 2C-x class [5]. After the publication of the book, the interest 
concerning the 2C-x class increased significantly [4]. Thus, many substances 
from the 2C-x class became recreational drugs in the late 1990s and early 2000s 
[6,7]. By the time they appeared on the illicit drug market, some of these 
substances were already classified in some countries as risk drugs and placed in 
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one of the known risk classes, while other substances from the 2C-x class came 
to be classified much later [6]. 

Various studies have indicated that these substances are dangerous and 
addictive, leading to the gradual inclusion of the 2C-x compounds in the list of 
high-risk drugs at various times in most countries. For example, in the United 
States, many 2C-x substances, such as 2C-E (2,5-dimethoxy-4-
ethylphenylethylamine), were listed as most dangerous drugs (Schedule I) in 
2012, while others, such as 2C-B (2,5-dimethoxy-4-bromophenylethylamine), 
were introduced as early as the 1990s [4,8,9]. The European Council instituted 
control measures and criminal charges for the use and distribution of 2C-I (2,5-
dimethoxy-4-iodophenylethylamine) in 2003, whereas in the US this was only the 
case in 2012 [9,10]. This classification is made based on their approved (or not) 
medical use, side effects, and their potential to be addictive [11]. 

As compounds from the 2C-x family are placed in the category of risk drugs, 
suppliers offer legal alternatives to these substances [6]. Drugs belonging to the 
2C-x family can be administered in various forms, such as orally, 
buccally/sublingually or nasally, and can be found in powder, liquid, tablet, or 
capsule form, or even in blotter papers [4,6,12,13].  

As the use of 2C-x compounds in legal pharmaceutical preparations is 
prohibited, the effects of these substances on humans have not been widely 
scientifically documented or analysed. However, the 2C-x compounds are known 
to induce hallucinogenic effects. The 2C-x substances act as agonists or 
antagonists of serotonin 5-HT2A receptor and alpha adrenergic receptors [6]. 

The effects of these compounds vary in intensity. In small doses, the 2C-x 
substances can play an important role in increasing the intensity of sensory 
perceptions. In large doses, the effects of these drugs can be especially 
dangerous, triggering hallucinations, tachycardia, convulsions, high blood 
pressure or even death [4,6]. 

Figure 1.1 General chemical structure of the 2C-x compounds 
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DOx compounds (substituted dimethoxyamphetamines) are amphetamine 
derivatives containing methoxy groups in positions 2 and 5 of the aromatic ring 
Most DOx compounds contain various lipophilic substitutes at position 4 of the 
aromatic ring. Amphetamines are an important class of substituted 
phenylethylamines. The basic chemical structure of the compounds belonging to 
the DOx class is shown in Figure 1.2. 

 

Figure 1.2 General chemical structure of the DOx compounds   

DOx compounds are psychedelic drugs that have a long-lasting effect. 
These compounds act as partial, selective agonists of the 5-HT2A, 5-HT2B and 5-
HT2C receptors [6]. The first to synthesise these compounds is Alexander Shulgin. 
The synthesis and side effects associated with the DOx substances were also 
presented in the PiHKAL  book [5]. 

Alexander Shulgin first synthesized the DOM compound (2,5-dimethoxy-4-
methylamphetamine) in 1964. Other analogues such as DOB (2,5-dimethoxy-4-
bromoamphetamine), DOC (2,5-dimethoxy-4-chloroamphetamine) or DOI (2,5-
dimethoxy-4-iodoamphetamine) followed [6]. Although some DOx compounds 
have been found on the illegal drug market for several decades, they have only 
become extremely popular among users in the twenty-first century [6].  

In addition to the hallucinogenic effects produced, taking substances from 
the DOx family can have negative effects on health. Consumed in large doses, 
they can affect the cardiovascular system [6,14]. The DOx compounds can be 
found in liquid, powder, tablet, capsule form or in blotting papers and are most 
often taken orally [15–17].  

NBOMe compounds (N-(2-methoxybenzyl)phenylethylamines) are 
analogues of the compounds belonging to the 2C-x family, containing an N-(2-
methoxy)benzyl substitute. The general chemical structure of the NBOMe 
compounds is represented in Figure 1.3. 

Like the 2C-x drugs, the compounds from the NBOMe class have been 
shown to be serotonin 5-HT2A receptor agonists, thus endowed with 
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halluciongenic properties [18–20]. Also, due to the interaction with alpha-
adrenergic receptors, NBOMe compounds can produce stimulant effects [18].   

Research by Richard Glennon et al., followed by studies conducted by 
Ralph Heim and Martin Hansel, led to the synthesis and characterisation of the 
compounds belonging to the NBOMe class [21–24]. In 2010, the compounds from 
the NBOMe class appeared on the illicit drug market [25,26].   

The NBOMe drugs of abuse can be administered by various routes, such 
as sublingual/oral route, intravenously, nasal insufflations or smoking [25]. They 
can be found in samples in many forms such as powder, liquid, pill form or in 
blotting papers [25,27]. Among them, most often, the NBOMe compounds are 
found in in blotter papers inscribed with various colored patterns, works of art, 
illustrations of cartoon characters or music and film posters [25,28,29].  

The choice of blotting papers for drug dispensing is common for drugs for 
which the usual dose administered is low [30]. In the case of a liquid or powder 
sample, limiting the dose administered is more difficult and the consequences of 
administering an overdose can be very serious [31]. The NBOMe compounds can 
produce effects such as visual and auditory hallucinations, convulsions, agitation, 
panic, hypertension, tachycardia, mydriasis (pupil dilation) and so on [25,29,32].  

According to an analysis of drugs owned by participants in a festival of 
psychedelic music and culture in Portugal, the presence of several DOx and 
NBOMe compounds was identified in samples sold as LSD (lysergic acid 
diethylamide) [33]. Involuntary use of DOx and NBOMe drugs of abuse can 
increase the risk of poisoning with these substances, thus having dangerous 
effects on the body [33]. An analysis of commercial blotting papers impregnated 
with various NBOMe substances revealed that often these substances are found 
in significantly higher concentrations than those stated by the supplier, which can 
lead to adverse consequences [30].  

Figure 1.3 General chemical structure of the NBOMe compounds 
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2.        Chapter II. Spectral characterisation and identification 

of the analysed compounds by ATR-FTIR 

 

2.2. Infrared spectroscopy 

2.2.1. Fourier Transform Infrared Spectroscopy (FTIR) 

The first infrared spectrometers were of the dispersive type. They use 
scattering elements, such as prisms or diffraction networks, to separate individual 
signals emitted from the source. Each infrared spectrometer of dispersive type is 
equipped with a detector that measures the amount of energy at each frequency 
separately, resulting in the final spectrum of the analysed sample [34].  

In recent years, a new type of infrared spectrometers, called Fourier 
Transform infrared spectrometers, have gained popularity due to the advantages 
that their use brings. Unlike dispersive infrared spectrometers, these new 
spectrometers analyse all infrared frequencies simultaneously, making them 
faster and more accurate analysis tools [34].  

Fourier Transform spectrometers consist of three basic elements: a 
radiation source, an interferometer and a detector. Their main component is the 
interferometer, the most common being the Michelson interferometer [34,35].  

The Michelson interferometer consists of two plane mirrors perpendicular 
to each other, one of which is fixed and the other movable, and of a beam divider 
(semitransparent instrument). The beam divider divides the radiation coming from 
the source into two identical beams so that each beam has a different path. One 
of the beams is transmitted, while the other is reflected. Thus, one of the beams 
reaches the movable mirror, and the other, to the fixed mirror. When the two 
beams are reflected back by the mirrors, they are recombined at the radiation 
divider, after an optical path difference has been introduced between them by 
means of the movable mirror (see Figure 2.1). The signal is then transmitted to 
the detector in the form of an interferogram, which is then processed by a 
mathematical process, called the Fourier Transform, which ensures the passage 
into the frequency range, resulting in a spectrum [34,35]. 
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Figure 2.1 Schematic diagram of the Michelson interferometer as part 
of an FTIR spectrometer 

2.2.2. Attenuated Total Reflectance (ATR) 

The ATR accessory is an instrument that can be used in FTIR 
spectrometers. It is designed to measure changes that occur in an internally 
reflected infrared beam when it comes into contact with a sample. The beam is 
directed to a dense optical crystal, which has a high refractive index, at a certain 
angle. This creates an evanescent wave that extends beyond the crystal surface 
in the sample kept in contact with it. This evanescent wave is attenuated in areas 
of the infrared spectrum where energy is absorbed by the sample. The attenuated 
beam exits through the opposite end of the crystal and is directed to the detector 
in the spectrometer. The main advantage of using the ATR accessory is that it 
allows samples to be analysed in their natural state, without requiring complex 
prior preparation [36].  

2.4. Vibrational analysis of chemical compounds based on their 
ATR-FTIR spectra  

Vibrational spectroscopy is a non-destructive method of identification and 
characterisation, by which specific chemical bonds of atoms, chemical 
compounds or functional groups present in a particular sample can be identified. 
This technique is based on the vibrational movements of molecules and allows 
analysis of liquid, solid or gaseous samples [37,38].  

An important type of vibrational spectroscopy refers to infrared 
spectroscopy. In general, almost any substance with covalent bonds absorbs 
electromagnetic radiation from the infrared region of the electromagnetic 
spectrum at different frequencies. By absorbing infrared radiation by molecules, 
the vibrational energy of binders between atoms changes. Thus, it is possible to 
identify specific chemical bonds of atoms, chemical compounds or functional 
groups present in the chemical structure of the analysed substances [37]. There 
are two important groups of vibrations: stretching vibrations and bending 
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vibrations. The stretching vibrations correspond to a continuous change in the 
interatomic distance along the axis of the bond between two atoms. Bending 
vibrations correspond to a change in the angle formed between two atomic bonds 
[39]. 

3.        Chapter III. Mathematical methods and approaches 

applied for the analysis and the identification of class 

membership of the targeted drugs of abuse 

 

3.1. Molecular descriptors and toxicity parameters  

Molecular descriptors are mathematical representations of the properties 
of a molecule and have been widely used in recent decades. They convert the 
physico-chemical and structural information of molecules into numerical format, 
thus becoming a useful tool in applying various methods of computational 
analysis [40–43]. An important role of this mathematical approach is to 
characterise and provide easier identification of related molecular compounds. 
There are currently many categories of molecular descriptors that can be used 
for this purpose, such as charge descriptors, radial distribution function (RDF) 
descriptors, delocalisation-degree indices, topological descriptors (indices), 
functional group counts descriptors, quantum molecular descriptors and toxicity 
molecular descriptors. Toxicity molecular descriptors are estimates of the 
toxicological character of molecules. Toxicity can also be assessed on the basis 
of estimates of toxicity parameters such as lethal dose 50 (LD50), carcinogenicity 
and immunotoxicity. In recent years, various software tools have been developed, 
by which molecular descriptors and toxicity parameters can be quickly 
determined.  

3.3. Exploratory analysis methods applied for the analysis and the 
identification of  class  membership  of  the  targeted  drugs 
of abuse  

3.3.1. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a multivariate mathematical method 
used to reduce the dimension of a data set by transforming the initial variables 
into new orthogonal variables, called principal components. They represent linear 
combinations of the initial variables and are determined so as to encapsulate the 
maximum variance that can be preserved from the initial data set [44]. In other 
words, PCA aims to reduce the dimension of a data set while retaining its 
maximum amount of information. PCA is also successfully used as an exploratory 
analysis method, being a useful tool for highlighting the grouping tendency of the 
analysed drugs and for identifying the variables that contribute most to the 
modeling of the targeted classes [45,46]. 
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3.4. Machine learning methods applied for the analysis and the 
identification of  class  membership  of  the  targeted  drugs 
of abuse  

3.4.1. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a machine learning method that can be 
successfully used in classification problems. Initially, this method was designed 
to deal with binary classification problems (involving two distinct classes), but it 
can now deal with problems involving more than two classes. SVM is effective for 
analyzing both simple linear problems and complex nonlinear problems [44]. 

3.4.2. Random Forest (RF) 

Random Forest (RF) is a machine learning method applicable in solving 
classification problems. To determine whether a sample belongs to a particular 
class, the method uses a collection of decision trees, each of which provides a 
prediction. Finally, the sample is assigned to the class that was predicted by most 
decision trees, with each tree voting for only one class. Alternatively, predicting 
whether a sample belongs to a particular class can be accomplished by averaging 
probabilistic predictions, calculated based on each decision tree [47]. 

3.4.3. Gradient Boosting (GB) 

Gradient Boosting (GB) is a machine learning method that can be 
successfully implemented for solving classification problems. The method 
combines several weak learners (trees, in general) to create a powerful predictive 
model, this techniqe being known as boosting. This approach involves 
sequentially training the models, each new model trying to correct errors made 
by previous models [48,49]. 

3.4.4. eXtreme Gradient Boosting (XGBoost) 

The eXtreme Gradient Boosting (XGBoost) method is a machine learning 
method that stands out for its good results in solving both binary classification 
problems and multiclass classification problems. The algorithm associated with 
the XGBoost method is based on the algorithm associated with the GB method 
and is known as a powerful, optimised and scalable algorithm, preferred for 
developing predictive models, due to its high degree of efficiency, accuracy and 
adaptability [50,51].  

3.4.5. K-Nearest Neighbor (KNN) 

K-Nearest Neighbor (KNN) is a machine learning method that solves 
classification problems based on a relatively simple algorithm. It assigns the class 
label of a test object based on the predominant class in the group of objects 
(neighbors) in the training dataset which are closest to the test object 𝐾[52].  
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3.4.6. Evaluation of the performance of the classification models 
associated with the utilised machine learning methods  

As discussed in previous sub-chapters, there are various machine learning 
methods that can be applied to develop classification models. Assessment of the 
quality of the models obtained can be carried out using various performance 
metrics. Their analysis allows comparing the performance of the obtained 
classification models, thus leading to the choice of the best model in the context 
of the given problem.  

Some of the most commonly used performance metrics are confusion 

matrix, sensitivity, specificity, accuracy, balanced accuracy, Matthews correlation 

coefficient (MCC) and area under the ROC curve (Area Under the Receiver 

Operating Characteristic Curve, ROC AUC).  

4.         Chapter IV. Personal contributions regarding the 

analysis and the recognition of class identity of the 2C-x, 

DOx and NBOMe drugs of abuse based on specific 

techniques and the application of multivariate mathematical 

methods 

 

4.1. Analysis and class identity recognition of drugs of abuse 
belonging to the 2C-x, DOx and NBOMe classes based on their 
ATR-FTIR spectra  

Considering that the number of new drugs, derivatives of the existing drugs, 
is constantly increasing on the black market, it is necessary to find tools which 
could be used to achieve the attribution of their class identity. Thus, it becomes 
essential to urgently develop tools to effectively detect both already known drugs 
and new drugs, which are often derivatives of the first mentioned substances. A 
useful approach to this is to use the ATR-FTIR spectra of targeted drugs. The 
results obtained regarding the analysis and the class identity recognition of the 
drugs belonging to the 2C-x, DOx and NBOMe classses based on their ATR-FTIR 
spectra are presented below. 

4.1.1. KNN-type machine learning system designed for the  
detection of illicit drugs based on ATR-FTIR spectra [53] 

Machine learning methods have been successfully applied in recent years 
to deal with various classification problems in various fields. In this subchapter 
are presented the results obtained based on the KNN algorithm, which was 
applied to detect substances belonging to the NBOMe and opioids classes, which 
are abused for recreational purposes [53]. Opioids represent a class of drugs of 
abuse with an important role in treating pain, used for medical but also for illicit 
purposes [54,55]. 
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For the detection of the illicit drugs belonging to these two classes, a KNN 
classification model was built, using as database 68 ATR-FTIR spectra selected 
from the SWGDRUG public spectral library [56]. The spectral database was 
divided into three different classes: class 1 – NBOMe, class 2 – opioids and class 
3 – negatives. The first class comprises the spectra of 12 NBOMe compounds, 
the second class includes the spectra of 30 opioids, and the third class consists 
of the spectra of 26 different substances that do not belong to the other two 
modelled classes of substances.  

The KNN model was built by using the Python software. The database was 

randomly divided into two parts, with 70% of the spectra forming the training set 

and 30% forming the test set. For a better estimate of accuracy, the training 

session was repeated 10 times. An average accuracy of 79.99% was achieved 

for the training set and 70.17% for the test set, thus highlighting the substantial 

potential of the model.  

The confusion matrix corresponding to accuracy having the closest value 

to mean accuracy is shown in Figure 4.1. This indicates that the KNN model 

correctly classified all NBOMe compounds (100%), while only 70% of the opioids 

were correctly classified. The rest of the opioids were misclassified as NBOMe 

(10%) or negatives (20%). 

 
Figure 4.1 Confusion matrix for the KNN model built to detect substances 

beloinging to the NBOMe and opioids classes [53] 
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The KNN algorithm analysed in this study provided promising results for 
classifying and detecting substances beloinging to the NBOMe and opioids 
classes based on their ATR-FTIR spectral data. One notable result of this 
research is the model's ability to accurately identify 100% of NBOMe compounds, 
which are well known for their high potency and abuse potential. Opioids, on the 
other hand, were correctly classified in 70% of cases. The remaining 
misclassifications occurred mainly between the opioids and the negative classes, 
indicating the need for further refinement of the model to improve the 
differentiation between these classes.  

Despite its limitations, this study shows the potential of the KNN method to 
detect and classify drugs belonging to the two analysed classes. These results 
form a basis that can ultimately contribute to the development of rapid, accurate 
and noninvasive drug detection methods, crucial for managing the global problem 

of drug abuse. 

 

4.1.2. Machine learning systems designed for the detection of illicit 
drugs based on ATR-FTIR spectra [46] 

The results obtained in the previous sub-chapter determined the extension 
of the research by analysing more classes of illicit drugs and diversifying the 
machine learning methods applied for the detection of the illicit drugs belonging 
to those classes. 

This sub-chapter presents a comparative study aiming to determine the 
most effective multivariate model that can be used to detect important classes of 
drugs of abuse based on their ATR-FTIR spectra. The substances covered by the 
analysis were divided into four classes: the hallucinogenic phenylethylamines 
class (composed mainly of the substances belonging to the 2C-x, DOx and 
NBOMe classes), the cannabinoids class, the opioids class and the negatives 
class, comprising various other substances of forensic interest [46]. 
Cannabinoids are a class of drugs comprising natural, synthetic and 
semisynthetic compounds that interact with cannabinoid receptors [57]. With the 
expansion of the accessibility of cannabinoids, especially the synthetic ones, 
public interest in these compounds has increased significantly [58].  

Such illicit drugs constantly appearing on the black market are a real 
problem today. From this point of view, it is important to develop models that can 
automatically detect the class membership of these new compounds. 

The aim of this study is to develop a machine learning system that can be 
used to detect hallucinogenic phenyethylamines (mainly 2C-x, DOx and NBOMe 
compounds), opioids and cannabinoids, based on their ATR-FTIR spectra. 

ATR-FTIR spectrometers are increasingly used for field screening of illicit 
drugs, as they are portable instruments and do not require sample preparation 
[59]. The ATR-FTIR spectra used in this study were extracted from the 
SWGDRUG public spectral library [56]. The spectral database comprises 95 
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spectra corresponding to targeted illicit drugs and negatives (different randomly 
selected substances of forensic interest). 

The spectral database was divided into four classes: class 1 –  
hallucinogenic phenylethylamines (mainly including spectra of compounds 
belonging to the 2C-x, DOx and NBOMe classes), class 2 – opioids, class 3 – 
cannabinoids and class 4 – negatives. The hallucinogenic phenylethylamines 
class comprises 25 spectra, the opioids class consists of 34 spectra, the 
cannabinoids class contains 18 spectra, and the negatives class consists of 18 
spectra corresponding to different randomly selected compounds. The machine 
learning models were built by using the Python software. 

In order to analyse the grouping tendency of data, PCA was initially applied 
considering two principal components. Figure 4.2 displays the score plot obtained 
for the two PCs. It shows that the hallucinogenic phenylethylamines form the most 
compact cluster. The points associated with the opioids and the cannabinoids are 
much more spread out than those corresponding to the substances belonging to 
the class of hallucinogenic phenylethylamines. Many of the points associated with 
the negatives overlap the clusters formed by the positives, especially the cluster 
of the opioids. 

 Next, five machine learning models were developed to detect the targeted 
illicit drugs, namely SVM, XGBoost, RF, GB and KNN models [50,60–63]. These 
models were chosen due to their efficiency, simplicity and quick implementation. 

For the development of each model, the dataset was randomly divided into 
two parts: 60% of the total spectra were used for training and the remaining 40% 
were used for testing. Each model was then trained on the training set and 
evaluated on the test set. The model, training and test datasets were then 
deleted. We define this process as a training session. Although the initial dataset 
for each session was the same, the training and test sets were different at each 
iteration because the entries were randomly selected each time. In other words, 
models were trained and evaluated each time on different selections of the same 
dataset. Each training session was repeated 10 times. 

In order to determine and compare the performance of the obtained 
models, their confusion matrices were determined, but also a series of 
performance metrics, namely the balanced accuracy, the sensitivity, the 
specificity, the Matthews correlation coefficient and the area under the ROC 
curve.  

The confusion matrices determined for each model are shown in Figure 
4.3, Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7. Table 4.1 presents the 
average values of the performance metrics used, obtained after 10 runs, 
corresponding to the five models developed. 
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Figure 4.2 Score plot of the first two principal components of a two-

component PCA displaying the clusters formed by hallucinogenic 

phenylethylamines (red), opioids (green), cannabinoids (blue), and 

negatives (black) [46] 

Table 4.1 indicates that the SVM and XGBoost models have the highest 
balanced accuracy. At the same time, the SVM model has the highest specificity, 
while the XGBoost is the most sensitive model. The SVM and XGBoost models 
have the best (and comparable) Matthews correlation coefficient, while the 
coefficient determined for the other models is significantly lower. The value of this 
coefficient is positive for all models, which indicates positive correlations in all 
cases. The SVM and XGBoost models also have the highest ROC AUC score, 
having almost the same value for both models. As the ROC AUC score is very 
high (close to 1), we may conclude that these two models have a very good 
prediction rate. 

If we consider that the models tested are tree-based models (XGBoost, RF 
and GB), decision boundary models (SVM) and non-parametric models (KNN), 
we may conclude that the decision boundary models had the best results, 
followed by the tree-based models and the non-parametric models. 

The confusion matrices (Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6 and 
Figure 4.7) indicates that, except for the GB model, all models classify the 
hallucinogenic phenylethylamines with 100% accuracy. The GB model is not 
much less efficient, with an accuracy of 80% concerning the classification of  the 
hallucinogenic phenylethylamines. The main difference between the models 
regarding the hallucinogenic phenylethylamine class is related to the false 
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positive rate, which is 20% for the GB model, 25% for the RF model, 32.14% for 
the SVM model, 33.33% for the XGBoost model and 53.33% for the KNN model.  

Table 4.1 Average values of the performance metrics corresponding to the 
classification models [46] 

Modelul 
Balanced 
accuracy 

(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Matthews 
correlation 
coefficient 

ROC 
AUC 

Support 
Vector 

Machines 
(SVM) 

93,1 ± 5,54 89,41 ± 4,16 96,79 ± 3,66 0,89 ±0,04 0,92 

eXtreme 
Gradient 
Boosting 

(XGBoost) 

89,66 ± 8,42 94,66 ± 7,95 84,66 ± 6,74 0,86 ± 0,5 0,91 

Random 
Forest 
(RF) 

82,76 ± 8,14 71,86 ± 6,93 93,66 ± 7,62 0,69 ± 0,09 0,82 

Gradient 
Boosting 

(GB) 
75,86 ± 5,21 65,62 ± 5,27 86,10 ± 4,98 0,61 ± 0,05 0,76 

K-Nearest 
Neighbors 

(KNN) 
65,52 ± 9,23 61,25 ± 10,35 91,12 ± 8,33 0,56 ± 0,09 0,75 

 

The opioids are 100% correctly classified by the XGBoost model. The 
second best correct classification rate (92.86%) is recorded for the SVM model, 
with 7.14% of the opioids being misclassified as hallucinogenic 
phenylethylamines. It is worth noting, however, that the false positive rate is 
66.67% in the case of the XGBoost model and 0% in the case of the SVM model. 
The other models perform worse at correctly attributing the class identity to the 
opioids. 

Cannabinoids are recognised as such with 100% accuracy by the SVM and 
the XGBoost models, both of which have a false positive rate of 0%. The rest of 
the models have significantly lower performance in this regard. 

Taking into account both the accuracy and the misclassification rates, the 
negatives appear to be the hardest to correctly classify for all the models, most 
likely due to the wide variety of substances that make up this class. 
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The availability of screening tools capable of detecting illicit substances 
harmful to humans quickly and reliably is essential for public safety. The models 
presented in this thesis can work in harmony with the currently recommended 
methodology for designer drug detection. 

Figure 4.3 Confusion matrix corresponding to the SVM model 

      Figure 4.4 Confusion matrix corresponding to the XGBoost model 
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Figure 4.5 Confusion matrix corresponding to the RF model 

        Figure 4.6 Confusion matrix corresponding to the GB model 
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In terms of overall accuracy, the best performing model is SVM. As 
screening forensic systems designed to operate ATR-FTIR field (portable) 
analytical tools, the models developed should be able to perform cost-effective, 
non-destructive, direct, real-time, on-site testing. However, the main objective of 
these models is to restrict the number of samples subjected to further in-depth 
analysis with more sophisticated stationary analytical instruments in the 
laboratory. Only the samples tested on site and assigned a positive class identity 
(hallucinogenic phenylethylamines, cannabinoids and opioids) will be analysed in 
the laboratory to determine their individual identity (not only their class 
membership). 

Therefore, an essential feature of such a screening system is its 
effectiveness in detecting positives. In this case, no compounds such as 
hallucinogenic phenylethylamine, cannabinoid or opioid should be misclassified 
as falsely negative. For this reason, XGBoost is at least as suitable for this 
purpose as SVM, since XGBoost does not produce false negatives. While 7.14% 
of the opioids are erroneously classified as hallucinogenic phenylethylamines by 
SVM, no hallucinogenic phenylethylamine, opioid, or cannabinoid is misclassified 
by XGBoost. 

It is true that XGBoost has a higher erroneous classification rate than the 
SVM model. XGBoost fails to correctly classify the negatives, while SVM 
misclassifies only 7.14% of the opioids as hallucinogenic phenylethylamines and 
25% of the negatives as hallucinogenic phenylethylamines. However, the false 

Figure 4.7 Confusion matrix corresponding to the KNN model 
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positives (false hallucinogenic phenylethylamines or opioids), although not 
desirable, are less important. As mentioned earlier, their individual identity 
(molecular structure) will be determined during further laboratory testing, based 
on a series of analytical methods that are recommended for each class of drug 
abuse by specialized international agencies such as the United Nations Office on 
Drugs and Crime [64,65]. In conclusion, SVM works best of all models tested, but 
XGBoost is a choice at least as good as SVM from a forensic point of view. 

The high classification accuracy of the presented models indicates that AI-
based strategies represent an important way forward in the context of 
automatising the processing of the ATR-FTIR spectra during field operations. The 
model that works best within the classification strategy that only considers the 
overall accuracy is SVM. However, since these are forensic tools, the 
classification strategy should also consider the false negative rate. For this 
reason, XGBoost is a choice at least as good as SVM, and its overall accuracy is 
comparable to that of SVM. 

4.1.3. Vibrational analysis of some hallucinogenic 
phenylethylamines belonging to the 2C-x and DOx classes of 
drugs of abuse [38] 

Vibrational spectroscopy is a useful, non-destructive technique that can be 

used to investigate and identify chemical compounds by determining their 

functional groups. This subchapter presents the vibrational analysis of three 

substances belonging to the 2C-x and DOx classes, namely 2-(4-iodo-2,5-

dimethoxyphenyl)ethanamine (2C-I), 2-(4-bromo-2,5-

dimethoxyphenyl)ethanamine (2C-B) and 1-(4-bromo-2,5-

dimethoxyphenyl)propan-2-amine (DOB) based on their ATR-FTIR spectra [38]. 
The spectra of the analysed substances (depending on the wavenumber and 

absorbance), obtained from the spectral data provided by SWGDRUG, are 

presented in Figure 4.8, Figure 4.9 and Figure 4.10 [56]. 

 The functional groups and the modes of vibration identificate identified for 

the most important peaks present in the spectra of the targeted 2C-x and DOx 

substances are presented in Table 4.2, Table 4.3 and Tabelul 4.4 [66,67]. 

Figure 4.8 ATR-FTIR spectrum of 2-(4-iodo-2,5-dimethoxyphenyl)ethanamine 
(2C-I) [38] 
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Figure 4.9 ATR-FTIR spectrum of 2-(4-bromo-2,5-dimethoxyphenyl)ethanamine 
(2C-B) [38] 

Figure 4.10 ATR-FTIR spectrum of 1-(4-bromo-2,5-dimethoxyphenyl)propane-2-
amine (DOB) [38] 

Table 4.2 Vibrational analysis of 2-(4-iodo-2,5-dimethoxyphenyl)ethanamine [38] 

2C-I  Functional group  Mode of vibration 

3003 
C-H  

(in the aromatic ring) 
stretching 

2887 

C-H  
(alkane) 

stretching 

N-H  
(amine) 

stretching 

2835 
N-H  

(amine) 
stretching 

2754     

2042     

1603 
C-C  

(in the aromatic ring) 
stretching 
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Table 4.3 Vibrational analysis of 2-(4-bromo-2,5-dimethoxyphenyl)ethanamine 
[38] 

N-H  
(amine) 

bending 

1487 
C-C  

(in the aromatic ring)  
stretching 

1429 

C-C  
(in the aromatic ring ) 

stretching 

C-H  
(alkane - methyl group) 

bending 

1383 
C-H  

(alkane - methyl group) 
bending 

1302     

1209 
C-O  

(alkyl aryl ether )  
stretching 

1117 
C-N  

(amine) 
stretching 

1024 
C-N  

(amine) 
stretching 

943     

850 C–H bending 

769 C–H bending 

706 C–H bending 

654 C-I  stretching 

428     

2C-B Functional group  Mode of vibration 

3009 
C-H 

(in the aromatic ring) 
stretching 

2893 

C-H  
(alcan) 

stretching 

N-H  
(amine) 

stretching 

2841 
N-H  

(amine) 
stretching 

2031   

1603 
C-C 

(in the aromatic ring) 
stretching 
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N-H  
(amine) 

bending 

1498 
C-C 

(in the aromatic ring) 
stretching 

1487 
C-C 

(in the aromatic ring) 
stretching 

1435 

C-C 
(in the aromatic ring) 

stretching 

C-H 
(alkane - methyl group) 

bending 

1389 
C-H 

(alkane - methyl group) 
bending 

1308   

1209 
C-O 

(alkyl aryl ether)  
stretching 

1117 
C-N 

 (amine) 
stretching 

1047 
C-N  

(amine) 
stretching 

1024 
C-N  

(amine) 
stretching 

949   

850 C–H bending 

798 C–H bending 

775 C–H bending 

706 C–H bending 

660 C-Br stretching 

434   
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Tabelul 4.4 Vibrational analysis of 1-(4-bromo-2,5-dimethoxyphenyl)propane-2-
amine [38] 

DOB Functional group  Mode of vibration 

3072 
C-H 

(in the aromatic ring) 
stretching 

2991 
C-H  

(alcan) 
stretching 

 
N-H  

(amine) 
stretching 

2875 

C-H  
(alcan) 

stretching 

N-H  
(amine) 

stretching 

2829 

C-H  
(alcan) 

stretching 

N-H  
(amine) 

stretching 

2800 
N-H  

(amine) 
stretching 

2737 
  

2569 
  

2499 
  

2031 
  

1608 
N-H  

(amine) 
bending 

1591 

N-H  
(amine) 

bending 

C-C 
(in the aromatic ring) 

stretching 

1493 
C-C 

(in the aromatic ring) 
stretching 

1464 

C-C 
(in the aromatic ring) 

stretching 
 

C-H 
(alkane - methyl group) 

bending 

1389 
C-H 

(alkane - methyl group) 
bending 

1354 
  

1308     
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1284     

1209 
C-O 

(alkyl aryl ether)  
stretching 

1198 
C-N 

 (amine) 
stretching 

1117 
C-N 

 (amine) 
stretching 

1030 
C-N 

 (amine) 
stretching 

966 
  

897 C–H bending 

856 C–H bending 

833 C–H bending 

793 C–H bending 

735 C–H bending 

706 C–H bending 

625 C-Br stretching 

492 
  

451 
  

434 
  

399   

 

The vibrational analysis of the ATR-FTIR spectra indicates that the three 

substances have the most important peaks in approximately the same regions, 

namely in the spectral regions 3010-2500 𝑐𝑚−1, 1600-700 𝑐𝑚−1 and 690-500 

𝑐𝑚−1. Thus, the existence of three main spectral domains is noted. The first 

spectral range corresponds to 3010-2500 𝑐𝑚−1 and reveals the presence of the 

N-H and C-H groups, suggesting also the presence of the aromatic ring. The 

second spectral range, corresponding to 1600-700 𝑐𝑚−1, comprises the largest 

number of peaks of the spectra and shows the presence of the C-H, N-H, C-C, 

C-O and C-N groups. The third spectral region ranges between 690 and 500 𝑐𝑚−1 

and suggests the presence of the C-I and C-Br groups, specific to the analysed 

compounds. The vibrational analysis of the spectra highlights the similarities 

between the analysed compounds, being an efficient, selective method of 

characterisation. 
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4.2. Analysis and class identity recognition of drugs of abuse 
belonging to the 2C-x, DOx and NBOMe classes based on 
molecular descriptors and toxicity parameters  

Molecular descriptors convert the chemical and structural information of the 

substances into mathematical language. With their help, the physical and 

chemical properties of substances can be expressed in numerical format. An 

important role of this transformation is to characterise and provide easier 

identification of related substances [40–43]. In this respect, various molecular 

descriptors calculated for some of the most representative substituted 

phenylethylamines belonging to the 2C-x DOx and NBOMe classes were 

analysed.  

4.2.1. Use of geometrical, topological and functional group counts 
descriptors for the characterisation of some compounds 
belonging to the 2C-x and DOx classes of drugs of abuse [43] 

Geometrical descriptors, topological descriptors (indices) and functional 

group counts descriptors are three important categories of molecular descriptors 

that can be successfully used to characterise the targeted drugs [43]. A significant 

number of descriptors from these categories were determined for six 

representative illicit drugs belonging to the 2C-x and DOx classes. The list of the 

analysed compounds is given in Tabelul 4.5. 

Tabelul 4.5 List of the analysed 2C-x and DOx compounds [43] 

Compound name Class 

2,5-dimethoxy-4-ethylthiophenylethylamine 
(2C-T-2) 

2C-x 

2,5-dimethoxy-4-propylthiophenylamine 
(2C-T-7) 

2C-x 

2,5-dimethoxy-4-bromophenylethylamine  
(2C-B) 

2C-x 

2,5-dimethoxy-4-ethylamphetamine 
(DOET) 

DOx 

2,5-dimethoxy-4-bromoamphetamine 
(DOB) 

DOx 

2,5-dimethoxy-4-methylamphetamine 
(DOM) 

DOx 

 

From the geometric descriptors category, three delocalisation-degree 

indices were calculated for each compound: the Harmonic Oscillator Model of 

Aromaticity index (𝐻𝑂𝑀𝐴), the aromaticity index (𝐴𝑅𝑂𝑀) and the 𝐻𝑂𝑀𝐴 total 

(𝐻𝑂𝑀𝑇). From the topological descriptors category we have determined the first 

Zagreb index (𝑍𝑀1), the second Zagreb index (𝑍𝑀2), the quadratic index 

(𝑄𝑖𝑛𝑑𝑒𝑥), the simple topological index Narumi (𝑆𝑁𝑎𝑟) and the geometric 

topological index Narumi (𝐺𝑛𝑎𝑟). 
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From the functional group counts descriptors category the following 

descriptors were selected for analysis: the number of aromatic C(𝑠𝑝2) (𝑛𝐶𝑎𝑟), 

number of unsubstituted benzene C(𝑠𝑝2) (𝑛𝐶𝑏𝐻), the number of substituted 

benzene C(sp2) (𝑛𝐶𝑏 −) and the number of acceptor atoms for H-bonds (𝑁, 𝑂, 𝐹) 

(𝑛𝐻𝐴𝑐𝑐). 

The molecular descriptors in the three categories were calculated using the 

Dragon 5.5 software [68]. The results (rounded to three decimal places) are 

presented inTable 4.6, Table 4.7 and Table 4.8. 

Table 4.6 Values of the topological indices calculated for the analysed 2C-x and 

DOx compounds  

 

 

Table 4.7 Values of the geometrical descriptors calculated for the analysed   

2C-x and DOx compounds  

 

 

 

 

 

 

 

 

  Topological indices 

 
𝑍𝑀1 𝑍𝑀2 𝑄𝑖𝑛𝑑𝑒𝑥 𝑆𝑁𝑎𝑟 𝐺𝑁𝑎𝑟 

2C-T-2 72 82 7 9,94 1,852 

2C-T-7 76 86 7 10,633 1,869 

2C-B 64 73 7 8,553 1,842 

DOET 74 84 8 9,652 1,828 

DOB 70 79 8 8,959 1,817 

DOM 70 79 8 8,959 1,817 

 
Geometrical descriptors 

 
𝐻𝑂𝑀𝐴 𝐴𝑅𝑂𝑀 𝐻𝑂𝑀𝑇 

2C-T-2 0,935 0,986 5,611 

2C-T-7 0,935 0,986 5,611 

2C-B 0,938 0,984 5,628 

DOET 0,94 0,987 5,643 

DOB 0,94 0,987 5,642 

DOM 0,94 0,987 5,643 
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Table 4.8 Values of the functional group counts descriptors calculated for the 

analysed 2C-x and DOx compounds 

 

The results obtained highlight the similarities and differences between the 

analysed compounds. Among the molecular descriptors included in the analysis, 

the most relevant for achieving a thorough discrimination between the two 

classes concerned (2C-x and DOx) proved to be those belonging to the category 

of geometrical descriptors, namely 𝐻𝑂𝑀𝐴, 𝐴𝑅𝑂𝑀 and 𝐻𝑂𝑀𝑇, but also the 

topological indices 𝑄𝑖𝑛𝑑𝑒𝑥 and 𝐺𝑁𝑎𝑟. On the other hand, the functional group 

counts descriptors could be relevant for the discrimination between the analysed 

compounds and the compounds belonging to other classes of drugs. Thus, the 

molecular descriptors calculated in this subchapter can be considered useful 

tools for identifying he class membership of the of the drugs concerned. 

4.2.2. PCA applied for the characterisation and the evaluation of the 
clustering tendency of some drugs of abuse belonging to the 
2C-x class based on topological indices [69] 

This subchapter presents the results obtained based on the application of 

the PCA method, with the main purpose of assessing the grouping tendency of 

the compounds belonging to the 2C-x class based on the topological indices [69]. 

The database involved in the analysis included 6 representative compounds 

belonging to the 2C-x class (called the class of positives) and 10 different 

compounds of forensic interest (generically called the class of negatives). Table 

4.9 presents the complete list of these substances. For each of these compounds, 

79 topological indices were calculated, representing the current total number of 

descriptors in this category that can be determined using alvaDesc, the software 

tool which was used to calculate them [70]. The Unscrambler X 10.4 software  

was then used to perform PCA [71]. 

 

 

  
Functional group counts descriptors 

 𝑛𝐶𝑎𝑟 𝑛𝐶𝑏𝐻 𝑛𝐶𝑏 −       𝑛𝐻𝐴𝑐𝑐 

2C-T-2 6 2 4 3 

2C-T-7 6 2 4 3 

2C-B 6 2 4 3 

DOET 6 2 4 3 

DOB 6 2 4 3 

DOM 6 2 4 3 
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Table 4.9 List of the 2C-x compounds and those belonging to the class of 

negatives included in the analysis [69] 

Compound name Compound type 

2C-B 2C-x 

2C-E 2C-x 

2C-H 2C-x 

2C-I 2C-x 

2C-T-2 2C-x 

2C-T-7 2C-x 

Butylone Negative 

Cathine Negative 

Ciprofloxacin Negative 

Januvia Negative 

JWH-018 adamantyl-carboxamide Negative 

JWH 019 Negative 

JWH-200 Negative 

JWH-250 Negative 

LSD Negative 

Nitroaspirin Negative 

 

Figure 4.11 presents 2D score plot relative to the first two principal 

components. It can be noted that substances belonging to the 2C-x class form a 

dense cluster, while the substances belonging to the class of negatives are 

scattered over the entire surface of the plot. Two false positives have also been 

identified, namely butylone and cathine. They were incorrectly classified probably 

because of their molecular structures, which are relatively similar to those of the 

2C-x substances.  

Figure 4.11 2D score plot showing the cluster formed by the 2C-x 

compounds (blue), as compared to substances from the negatives class (red) 

[69] 
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Figure 4.12 presents the loading plot, relative to the first two principal 

components, which highlights the contribution of each variable to the formation 

and discrimination of the various formed clusters. Analysing this graph it can be 

seen that the input variables with the highest discriminating power are: the all-

path Wiener index 𝑊𝑎𝑝, the Gutman molecular topological index 𝐺𝑀𝑇𝐼, the 

Schultz molecular topological index 𝑆𝑀𝑇𝐼, the Gutman molecular topological 

index by valence vertex degrees 𝐺𝑀𝑇𝐼𝑉 and the Schultz molecular topological 

index by valence vertex degrees 𝑆𝑀𝑇𝐼𝑉. 

Figure 4.12 Loading plot illustrating the contribution of the topological 

indices to the formation of the clusters determined by the 2C-x compounds [69] 

The results obtained in the analysis indicates that the topological indices 

can be used to assign the class identity of the 2C-x drugs and can be used as 

input data for the development of advanced systems built to classify them and to 

predict their biological activity. 

 

4.2.3. PCA applied for the characterisation and the evaluation the 
clustering tendency of some drugs of abuse belonging to the 
2C-x, DOx and NBOMe classes based on topological indices, 
charge and RDF descriptors [45] 

The results presented in the 4.2.2. subchapter encouraged the expansion 

of the analysis by adding more compounds from the DOx and NBOMe classes to 

the database, but also by expanding the negatives class. Furthermore, for the 

application of the PCA method, other descriptors, representing charge or RDF 

descriptors, were included in the analysis in addition to the topological indices 

[45]. Thus, 304 molecular descriptors were calculated during the analysis, 79 of 

them being topological indices, 15 of them being charge descriptors, and the 

remaining 210 descriptors being RDF descriptors, representing the current total 

number of descriptors in these categories that can be determined using alvaDesc, 

the software tool which was used to calculate them [70].  
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Three classes were considered for the analysis. The first class consisted of 

some drugs belonging to the 2C-x and DOx clasees, which were treated as a 

single class due to the similarities existing between their members. The second 

class comprised some NBOMe drugs, and the third class was formed with 

different substances of forensic interest and was referred to as the negatives 

class. Specifically, the database consisted of 10 compounds belonging to the 2C-

x or DOx classes (class 1), 10 compounds belonging to the NBOMe class (class 

2) and 14 compounds with different molecular structures (class 3). The list of the 

compounds included in the database is presented in Table 4.10. 

The purpose of the analysis was to assess to what extent the molecular 

descriptors from the three groups (topological, charge and RDF) can be used for 

a successful assignment of the class identity of the 2C-x, DOx and NBOMe 

compounds and therefore for predicting the psychedelic activity of an unknown.  

The evaluation was carried out using PCA, which aimed to:  

a) assess the natural (unsupervised) formation of the 2C-x / DOx and 

NBOMe clusters; 

b) asses the relevance of the molecular descriptors for modelling these 

classes of drugs of abuse and discriminate them from negatives (any 

other compound);  

c) identify the descriptors that are the most important for modeling / 

discriminating each of these three groups of substances.  

Table 4.10 List of the 2C-x/DOx, NBOMe compounds and those belonging to 

the class of negatives included in the analysis (© 2022 IEEE) [45] 

2C-x/DOx 
compounds 

NBOMe compounds Negatives 

2C-B 25C-NBOMe Buphedrone 

2C-E 25D-NBOMe Butylone 

2C-H 25E-NBOMe Ciprofloxacin 

2C-I 25H-NBOMe EGFR/ErbB-2 Inhibitor 

2C-T-2 25I-N3BOMe Januvia 

2C-T-7 25I-N4BOMe JWH-018 adamantyl-
carboxamide 

DOB 25I-NBOMe JWH-019 

DOC 25B-NBOMe JWH-200 

DOET 25C-NB3OMe JWH-250 

2,5-DMA (DOH) 25C-NB4OMe L_amoxicilin 

  LSD 

  Nitroaspirin 

  Penicilin_v 

  Xanax 
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The Unscrambler X 10.4 software was used to perform PCA [71]. For this 
purpose, the data was mean centered. The blocks were divided based on the 
standard deviation. SDV was used as computational algorithm. 

 The explained variance plot, shown in Figure 4.13, indicates that the first 

two principal components are responsible for most of the explained variance of 

the data. PC1 și PC2 account for 78% and 21% of the explained variance, 

respectively. Therefore, the initial 304 variables can be reduced to just two 

variables (the first two principal components). Reducing the number of variables 

allows easier interpretation of the data clustering without losing much information. 

Figure 4.13 Explained variance plot corresponding to the calibration set (blue) 

and to the validation set (red) (© 2022 IEEE) [45] 

The 2D score plot relative to the first two principal components is shown in 

Figura 4.14. It indicates that the first two modeled classes of drugs of abuse (2C-

x/DOx class and NBOMe class) form well-defined clusters. The 2C-x and DOx 

compounds form the densest cluster, which can be identified by high positive PC1 

scores and close to zero negative PC2 scores. Two false positives have been 

identified, namely butylone and buphedrone, which have been misclassified, 

probably because their chemical structures are relatively similar to those of the 

2C-x or DOx compounds. The NBOMe compounds form a cluster characterised 

by relatively close to zero PC1 scores and positive PC2 scores. Since their 

molecular structures are very different, the negatives form a diffuse cloud, which 

is located in quadrants II and III. The negatives can be easily distinguished from 

the positives due to the PC1 scores. 
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Figure 4.14 2D score plot highlighting the clusters formed by the 2C-x/DOx 

(blue) and the NBOMe (red) drugs of abuse compared to the negatives (green) 

(© 2022 IEEE) [45] 

Although the variance encapsulated by PC3 is significantly lower than that 

corresponding to the PC1 and PC2 components, the 3D PCA score plot can be 

useful for a better visualization, as shown in Figure 4.15. 

Figure 4.15 3D score plot illustrating the clusters formed formed by the 2C-

x/DOx (blue) and the NBOMe (red) drugs of abuse compared to the negatives 

(green) (© 2022 IEEE) [45] 

The loading plot, presented in  the all-path Wiener index 𝑊𝑎𝑝, the Gutman 

molecular topological index 𝐺𝑀𝑇𝐼, the Schultz molecular topological index 𝑆𝑀𝑇𝐼, 
the Gutman molecular topological index by valence vertex degrees 𝐺𝑀𝑇𝐼𝑉 and 

the Schultz molecular topological index by valence vertex degrees 𝑆𝑀𝑇𝐼𝑉. 

Figure 4.16, shows the contribution of each variable to the modeling and 

the discrimination of each cluster considered. Based on the analysis of this plot 

we can identify the input variables with the highest discrimination power, namely 

the all-path Wiener index 𝑊𝑎𝑝, the Gutman molecular topological index 𝐺𝑀𝑇𝐼, 
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the Schultz molecular topological index 𝑆𝑀𝑇𝐼, the Gutman molecular topological 

index by valence vertex degrees 𝐺𝑀𝑇𝐼𝑉 and the Schultz molecular topological 

index by valence vertex degrees 𝑆𝑀𝑇𝐼𝑉. 

Figure 4.16 Loading plot showing the contribution of the molecular descriptors 

to the formation of the 2C-x / DOx and NBOMe clusters (© 2022 IEEE) [45] 

The analysis carried out based on the topological indices, the charge 

descriptors and the RDF descriptors shows that they may be successfully used 

to assign the class identity of the drugs belonging to the 2C-x/DOx and NBOMe 

classes. The first two modeled classes of drugs (2C-x / DOx and NBOMe classes) 

form well-defined clusters. However, the results indicate that some 

misclassifications can be expected, i.e. negatives mistakenly classified as 2C-

x/DOx. But from a forensic point of view the most important aspect is that no 

positive (2C-x/DOx or NBOMe substances) have been misclassified as negative. 

In conclusion, the selected molecular descriptors could be successfully 

used as input into advanced systems used to classify drugs belonging to the 

targeted classes, including new compounds, and to predict their biological 

activity. 

4.2.4. Use of quantum molecular descriptors and molecular 
electrostatic potential diagrams for the characterisation of 
some drugs of abuse belonging to the 2C-x and NBOMe 
classes [72] 

Quantum molecular descriptors and molecular electrostatic potential (MEP) 

diagrams are useful tools for the physico-chemical characterisation of the 

compounds. In order to characterise some representative compounds belonging 

to the 2C-x and NBOMe classes of illicit drugs, their MEP diagrams were 

determined, along with ten quantum molecular descriptors: the dipole moment 

(DM), the minimum energy (𝐸𝑚𝑖𝑛), the energy of the highest occupied molecular 

orbital (𝐸𝐻𝑂𝑀𝑂), the energy of the lowest unoccupied molecular orbital (𝐸𝐿𝑈𝑀𝑂), 

the gap energy (𝐸𝑔𝑎𝑝), the chemical hardness (𝜂), the chemical softness (𝜎), the 
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electronegativity (χ), the chemical potential (𝜇) and the electrophilicity index (𝜔) 

[72].  

The targeted compounds are 2-(2,5-dimethoxyphenyl)ethanamine  (2C-H), 

2-(4-bromo-2,5-dimethoxyphenyl)ethanamine (2C-B), 2-(4-ethyl-2,5-

dimethoxyphenyl)ethanamine (2C-E), 2-(2,5-dimethoxyphenyl)-N-[(2-

methoxyphenyl)methyl]ethanamine (25H-NBOMe), 2-(4-bromo-2,5-

dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe), and 

2-(4-ethyl-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25E-

NBOMe).  

Some of the quantum molecular descriptors were determined by using the 

HyperChem 8.0 software, namely the dipole moment (DM), the minimum energy 

(𝐸𝑚𝑖𝑛), the energy of the highest occupied molecular orbital (𝐸𝐻𝑂𝑀𝑂) and the 

energy of the lowest unoccupied molecular orbital (𝐸𝐿𝑈𝑀𝑂) [73]. The other 

quantum molecular descriptors were determined based on the formulas 

presented in the sub-chapter 3.1. The values  of the quantum molecular 

descriptors (rounded to two decimal places) corresponding to the analysed 

compounds are presented in Table 4.11 and Table 4.12.  

Table 4.11 Values of the quantum molecular descriptors corresponding to the 
targeted compounds [72] 

 

 
𝐸𝑚𝑖𝑛 

(kcal/mol) 
𝐸𝐻𝑂𝑀𝑂 

(eV) 
𝐸𝐿𝑈𝑀𝑂 

(eV) 
𝐸𝑔𝑎𝑝 

 

(eV) 
𝜂 

(eV) 
2C-H -2783,23 -8,86 0,29 9,15 4,57 
2C-B -2752,17 -9,00 -0,16 8,85 4,42 
2C-E -3346,64 -8,46 0,31 8,77 4,39 

25H-NBOMe -4634,84 -8,51 0,35 8,86 4,43 
25B-NBOMe -4601,15 -8,97 -0,07 8,90 4,45 
25E-NBOMe -5197,14 -8,41 0,34 8,75 4,38 

 

Table 4.12 Values of the quantum molecular descriptors corresponding to the 
targeted compounds [72] 

 𝜎 

(eV)
-1

 
𝜒 

(eV) 
𝜇 

(eV) 
𝜔 

(eV) 
DM 

(debye) 
2C-H 0,11 4,29 -4,29 2,01 2,17 
2C-B 0,11 4,58 -4,58 2,37 3,06 
2C-E 0,11 4,07 -4,07 1,89 1,46 

25H-NBOMe 0,11 4,08 -4,08 1,88 1,70 
25B-NBOMe 0,11 4,52 -4,52 2,30 3,26 
25E-NBOMe 0,11 4,03 -4,03 1,86 0,73 

 

The chemical hardness ranges from 4.38 to 4.57 eV, while the chemical 
softness has an approximate value of 0.11 (eV)-1 for all the compounds, indicating 
their good chemical stability. This property is also highlighted by the values of the 
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energy gap, which range from 8.75 to 9.15 eV. The values of the electrophilicity 
index are between 1.86 and 2.37 eV, which indicates that all analysed compounds 
are strong electrophiles [74]. 

Next, the HyperChem 8.0 software was used to generate the MEP 
diagrams for the targeted substances. The MEP diagram of the 2C-B compound 
is shown in Figure 4.17 [73]. By analysing the MEP diagrams, possible active 
sites for the electrophilic attack can be identified, corresponding to regions with 
negative electrostatic potential. 

Figure 4.17 MEP diagram of 2-(4-bromo-2,5-dimethoxyphenyl)ethanamine 
(2C-B) [72]  

In conclusion, the quantum molecular descriptors and the molecular 
electrostatic potential (MEP) diagrams provide relevant information on the 
physico-chemical properties of the targeted compounds belonging to the 2C-x 
and NBOMe classes of illicit drugs, thus representing useful tools for their 
characterisation. 

4.2.5. PCA applied for the characterisation and the evaluation of the 
clustering tendency of some drugs of abuse belonging to the 
2C-x, DOx and NBOMe classes based on some molecular 
descriptors and toxicity parameters [75] 

This subchapter presents important toxicological aspects corresponding to 
some representative drugs belonging to the DOx and NBOMe classes of illicit 
drugs. More specifically, three molecular toxicity descriptors were determined, 
namely the Verhaar Fish baseline toxicity (𝐵𝐿𝑇𝐹96), the Verhaar Daphnia 

baseline toxicity (𝐵𝐿𝑇𝐷48), the Verhaar Algae baseline toxicity (𝐵𝐿𝑇𝐴96), 

together with three toxicity parameters, namely the median lethal dose (𝐿𝐷50), 

the immunotoxicity and the carcinogenicity. These toxicity indicators were then 
subjected to PCA to assess the clustering tendency and the potential 
discrimination between the analysed classes of compounds [75]. The list of the 
targeted compounds is presented in Table 4.13. 

The first three toxicity indicators, namely the 𝐵𝐿𝑇𝐹96, 𝐵𝐿𝑇𝐷48 and 𝐵𝐿𝑇𝐴96  

descriptors were determined using the alvaDesc software [70]. The values of the 
𝐵𝐿𝑇𝐹96, 𝐵𝐿𝑇𝐷48 and 𝐵𝐿𝑇𝐴96 determined for the targeted compounds are given 

in Table 4.14. 
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Table 4.13 List of the targeted DOx and NBOMe compounds [75] 

Compound name Compound class 

2,5-dimethoxyamphetamine 
(2,5-DMA) 

DOx 

2,5-dimethoxy-4-
bromoamphetamine 

 (DOB) 

DOx 

2,5-dimethoxy-4-
chloroamphetamine  

(DOC) 

DOx 

2,5-dimethoxy-4-
ethylamphetamine 

 (DOET) 

DOx 

2,5-dimethoxy-4-
methylamphetamine 

 (DOM) 

DOx 

25B-NBOMe NBOMe 

25C-NBOMe NBOMe 

25C-NB3OMe NBOMe 

25C-NB4OMe NBOMe 

25D-NBOMe NBOMe 

 
Table 4.14 Values of the 𝐵𝐿𝑇𝐹96, 𝐵𝐿𝑇𝐷48 and 𝐵𝐿𝑇𝐴96 descriptors 

corresponding to the targeted compounds [75] 

 
Compound name BLTF96 BLTD48 BLTA96 

1 2,5-DMA -2,8 -2,89 -2,89 

2 DOC -3,26 -3,41 -3,44 

3 DOET -3,27 -3,42 -3,44 

4 DOM -3,04 -3,16 -3,17 

5  DOB -3,38 -3,55 -3,57 

6 25B-NBOMe -4,17 -4,43 -4,5 

7 25C-NBOMe -4,08 -4,32 -4,39 

8 25C-NB3OMe -4,08 -4,32 -4,39 

9 25C-NB4OMe -4,08 -4,32 -4,39 

10 25D-NBOMe -3,85 -4,07 -4,12 

11 25E-NBOMe -4,04 -4,28 -4,35 

12 25H-NBOMe -3,65 -3,85 -3,89 
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The following toxicity indicators, namely the median lethal dose (𝐿𝐷50), the 

immunotoxicity and the carcinogenicity were predicted using ProTox-II software 
[76]. The canonical SMILES (Simplified Molecular Input Line Entry System), by 
which the molecular structures of compounds are represented as strings, were 
collected from the PubChem  website and then used as input data for the ProTox-
II software [76,77]. The results obtained are presented in Table 4.15. For the 
immunotoxicity and the carcinogenicity, “inactive” was coded as “0”, while “active” 
was assigned the code “1”. 

Table 4.15 Predicted values of the LD50, immunotoxicity and carcinogenicity 
corresponding to the targeted compounds [75] 

 
Comppund 

name 
LD50 

(mg/kg) Immunotoxicity Carcinogenicity 

1 2,5-DMA 171 0 1 
2 DOC 330 0 0 
3 DOET 330 0 1 
4 DOM 330 0 1 
5 DOB 400 0 1 
6 25B-NBOMe 400 1 0 
7 25C-NBOMe 300 1 0 
8 25C-NB3OMe 800 1 0 
9 25C-NB4OMe 940 1 0 
10 25D-NBOMe 300 1 0 
11 25E-NBOMe 300 1 0 
12 25H-NBOMe 300 1 0 

 
Next, based on the determined toxicity indicators (𝐵𝐿𝑇𝐹96, 𝐵𝐿𝑇𝐷48, 

𝐵𝐿𝑇𝐴96, 𝐿𝐷50, immunotoxicity and carcinogenicity), PCA was parformed using 

Minitab 19 software with its default settings [78]. The scree plot obtained is 
presented in Figure 4.18. This indicates that the first two principal components 
(PCs) are enough for future analysis, as they encapsulate a cumulated explained 
variance of 94% (out of which 81.10% corresponds to PC1).  

The score plot, shown in Figure 4.19, indicates that the NBOMe drugs of 
abuse are characterised by negative PC1 scores, while the DOx illicit compounds 
have positive PC1 scores. Therefore, these two classes of drugs can be clearly 
discriminated, and this only based on their PC1 scores. The score plot also 
indicates that PC2 plays an important role in the discrimination between the 
NBOMe compounds. Most NBOMe compounds have positive PC2 scores, but 
there are also two exceptions, namely 25C-NB3OMe and 25C-NB4OMe, which 
are characterised by negative PC2 scores. 

The loading plot, presented in Figure 4.20, indicates the most important 
variables contributing to the discrimination between the DOx and the NBOMe 
drugs of abuse. The DOx compounds cluster mainly due to their carcinogenicity 
resoponses and the values of the 𝐵𝐿𝑇 descriptors. On the other hand, the 

NBOMe compounds may be clearly distinguished from DOx compounds, 
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especially due to their negative PC1 scores generated by their immunotoxicity 
responses and their 𝐿𝐷50 values. What distinguishes the NBOMe substances 

characterised by negative PC2 scores from those that form the cluster located in 
the quadrant II are their 𝐿𝐷50 values. The 𝐿𝐷50 values corresponding to 25C-

NB3OMe and 25C-NB4OMe are much (almost three times) higher than the 𝐿𝐷50 

values obtained for the NBOMe compounds grouped in the quadrant II. 

Figure 4.18 Scree plot obtained based on the calculated toxicity indicators [75] 

Figure 4.19 2D score plot highlighting the discrimination between the DOx and 
the NBOMe drugs of abuse based on the determined toxicity indicators [75]  
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Figure 4.20 Loading plot illustrating the contribution of the toxicity indicators to 
the formation of the DOx and NBOMe clusters [75] 

The computational assessment of the toxicity of the compounds is very 
important because it indicates in a rapid and cost-effective way which new drugs 
of abuse pose a higher threat from the public health point of view. The results 
show that the toxicity indicators chosen are relevant for a clear discrimination of 
the DOx and the NBOMe illicit drugs. Performing PCA was also useful for 
assessing which toxicity indicators (and associated medical conditions) ensure 
this discrimination.  

5.        Chapter V. General conclusions and future directions for 

research and development 

General conclusions  

The research activity within this doctoral thesis was carried out in two 
directions: 

• research conducted based on the ATR-FTIR spectra of the analysed 
2C-x, DOx and NBOMe drugs  

• research conducted based on some molecular descriptors and toxicity 
parameters determined for the analysed 2C-x, DOx and NBOMe drugs  

The research conducted based on the ATR-FTIR spectra has primarily 
resulted in the development of some machine learning systems aimed at 
detecting 2C-x, DOx and NBOMe illicit drugs, as well as at detecting drugs 
belonging to other classes of forensic interest, such as opioids and cannabinoids. 
For the development of these machine learning systems, the following methods 
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were used: SVM, XGBoost, RF, GB and KNN. Of these, the best results were 
obtained by SMV and XGBoost. Also, within this research direction, the 
vibrational analysis of the ATR-FTIR spectra of some drugs belonging to the 
targeted classes was carried out. 

The research based on the molecular descriptors and the toxicity 
parameters consisted in characterising and assessing the grouping tendency of 
the representative drugs belonging to the 2C-x, DOx and NBOMe classes. The 
results showed that the molecular descriptors and the toxicity parameters used 
have a high discrimination power for the compounds belonging to these three 
classes of drugs concerned and may be used as input data for future research.  

Future directions for research and development 

With regard to the future directions for research and development, the 
following are envisaged: 

• the development of the current spectral database by adding the ATR-
FTIR spectra of other known 2C-x, DOx and NBOMe drugs of abuse, as they are 
provided by specialised laboratories; 

• the development of the current spectral database by adding the ATR-
FTIR spectra of new 2C-x, DOx and NBOMe compounds, as they are produced 
in clandestine laboratories and subsequently identified, and their spectra are 
provided by specialised laboratories; 

• the development of the database built based on the molecular 

descriptors and the toxicity parameters by calculating them for other 2C-x, DOx 

and NBOMe compounds, both known and new compounds produced in 

clandestine laboratories and subsequently identified; 

• the application of other multivariate mathematical methods for the 
detection of the 2C-x, DOx and NBOMe drugs of abuse, such as ANN or Logistic 
Regression; 

• the development of some QSAR models based on the analysed 
molecular descriptors in order to predict the pharmacological and/or toxicological 
properties of the 2C-x, DOx and NBOMe substances; 

• the expansion of the research by developing new classification models 
to detect other types of drugs of abuse. 
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